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Abstract

The increasing ability to generate large-scale, quantitative proteomic data has brought with it the challenge of analyzing
such data to discover the sequence elements that underlie systems-level protein behavior. Here we show that short, linear
protein motifs can be efficiently recovered from proteome-scale datasets such as sub-cellular localization, molecular
function, half-life, and protein abundance data using an information theoretic approach. Using this approach, we have
identified many known protein motifs, such as phosphorylation sites and localization signals, and discovered a large
number of candidate elements. We estimate that ,80% of these are novel predictions in that they do not match a known
motif in both sequence and biological context, suggesting that post-translational regulation of protein behavior is still
largely unexplored. These predicted motifs, many of which display preferential association with specific biological pathways
and non-random positioning in the linear protein sequence, provide focused hypotheses for experimental validation.
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Introduction

Short amino acid sequences, typically 3 to 10 amino acids in

length, play important functional roles in determining protein

behavior [1]. Such protein regulatory elements, often called Short

Linear Motifs or SLiMs, directly facilitate protein sub-cellular

localization [2,3,4,5,6], protein half-life [7,8], protein-protein

interaction [9], and post-translational modifications [10,11]. These

elements often lie in regions of protein disorder [12,13] and are

conserved in closely related species [14], but are difficult to identify

due to their short length and degenerate composition.

Computational approaches have been developed to discover

protein motifs and have led to fundamental observations related to

the sequence determinants of protein behavior [15,16,17,18,19,

20,21,22,23,24,25]. Some of these approaches, such as Motif-x

[21], accurately discover phosphorylation and acetylation motifs

surrounding a particular residue but were not designed for the

broader discovery of protein motifs involved in other facets of post-

translational regulation. Other approaches such as DiLiMot [20]

and SLiMFinder [22] can readily uncover motifs enriched in small

sets of proteins but are less well adapted to larger datasets with

thousands of proteins and complex protein behaviors. As the

amount and diversity of large-scale proteomic data expands, there

is a rising need for a general approach that can readily be applied

to proteome-scale datasets such as those generated by tandem

mass spectrometry [26] and yeast two-hybrid [27]. Furthermore,

the increasing use of quantitative proteomics necessitates an

algorithm that can discover motifs whose presence linearly or non-

linearly correlate with quantitative measurements such as protein

half-life or abundance.

Here we describe a new de novo protein motif-finding approach

that seeks to address these challenges. The underlying algorithm

draws on information theory, specifically the idea of mutual

information [28], in order to find motifs that are informative about

a particular protein behavior. To demonstrate the versatility and

power of our approach, we applied our approach to a variety of

experimental proteome-wide datasets in yeast, including sub-

cellular localization, protein-protein interaction (PPI), biological

pathway, molecular function, protein half-life, and protein

abundance data. Many of the motifs we discovered match known

protein motifs and many more are novel predictions, suggesting

that post-translational regulation is largely uncharted territory.

Methods

Building a comprehensive catalog of eukaryotic protein
motifs

Similar to ongoing experimental and computational efforts to

decode the regulatory genome [29,30,31,32], our ultimate goal is

to comprehensively decode the regulatory proteome. Towards this

end, we have developed a new methodology, called FIRE-pro, to

discover protein motifs from large-scale proteomics datasets.

FIRE-pro, which stands for Finding Informative Regulatory

Elements in proteins, has a simple goal: to discover protein motifs

whose presence or absence in protein sequences correlates with the

biological behavior of the corresponding proteins. In its simplest

application, FIRE-pro’s use of mutual information results in the

discovery of motifs that tend to be present in proteins exhibiting a

particular behavior and absent in proteins that do not (Figure 1).
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The algorithm’s general framework can also handle non-binary

(‘‘multi-class’’) and quantitative experimental data, allowing for the

more convenient analysis of quantitative proteomic datasets.

Motifs are defined as fixed-length patterns using a degenerate

code of amino acids. For example, a motif may be defined as

‘‘L.[RK]’’; in this motif, only ‘‘L’’ is allowed at the first motif

position, any amino acid is allowed at the second position (‘‘.’’,

equivalent to ‘‘x’’ in some representations), and either ‘‘R’’ or ‘‘K’’ is

allowed at the third position. Given a motif, the motif profile denotes

the presence or absence of the motif in each protein sequence. A

motif is present in a protein if the amino acid sequence contains at

least one exact match to its pattern. The protein behavior profile is

derived from experimental data and indicates the behavior of each

protein in the experimental data. Such behaviors can be direct

measurements, e.g., protein abundance or half-lives, or derived

from the experimental measurements using data analysis techniques

such as clustering; in the latter case, a protein’s behavior can be

described as the label of the cluster to which it was assigned. The

correlation between a protein motif and a protein behavior profile is

determined using mutual information and assessed using non-

parametric randomization tests. Highly informative motifs are

predicted to influence the studied protein behavior.

Informative motifs are discovered via a k-mer exploration step,

where all abundant k-mers are evaluated and scored using mutual

information, followed by motif refinement, where changes are

made to the initial k-mers that increase both motif degeneracy and

motif information. In the first step, a motif profile is created for

each k-mer and the mutual information (MI) between this profile

and the protein behavior profile is calculated. In the second step,

informative k-mers are converted into more informative degener-

ate motifs using a greedy search procedure, in which sets of amino

acids are tested at individual positions of the motif and changes

that lead to more informative motifs are preserved. Thus, this two-

step algorithm performs a comprehensive coarse-grained search of

motif space and generates accurate motif representations.

To aid in the interpretation of motif predictions, our framework

also includes post-processing steps intended to assess statistical

significance, minimize false positives, and determine the biological

significance and functional roles of the predicted motifs. Motif

significance is calculated through non-parametric randomization

tests in which the protein behavior profile is shuffled and the mutual

information is calculated between this shuffled profile and the motif

profile. This procedure is repeated 10,000 times by default and a

motif is deemed significant if its mutual information with the motif

Figure 1. Schematic of motif-finding approach. FIRE-pro seeks to identify protein motifs whose pattern of presence and absence across all
amino acid sequences is highly informative about the behavior profile for the corresponding proteins. The algorithm takes as input a user-specified
protein behavior profile listing a quantitative measurement or discrete attribute of every protein (e.g., half-life or nuclear localization). Presented is a
schematic example using discrete localization data. Here, knowing whether the motif is present or absent in the amino acid sequence provides
significant information regarding the behavior of the protein. For each candidate motif (e.g., ‘‘KRK’’), FIRE-pro calculates the correlation between the
motif profile and the protein behavior profile using mutual information. Motifs that maximize the mutual information are ultimately selected for
further characterization.
doi:10.1371/journal.pone.0014444.g001
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profile is greater than all 10,000 randomized information values.

Biological significance of motifs is explored by analyzing the set of

proteins containing the motif and the positions of predicted motif

instances to determine GO enrichment, overlap with protein

domains, and possible motif-motif interactions. A detailed descrip-

tion of the FIRE-pro framework can be found in Text S1.

Results

We used FIRE-pro to discover motifs involved in a broad range

of biological processes and functions. To this end, we compiled

and analyzed .600 experimental protein datasets from S. cerevisiae

and S. pombe, including discrete sub-cellular localization and

protein-protein interaction data, as well as quantitative protein

half-life and abundance data. Many of these analyses would have

been difficult to carry out in existing protein motif discovery

frameworks due to the large number of proteins being analyzed or

the multi-class or quantitative nature of the data.

Our analyses revealed a total of ,6,900 protein motifs with an

average of 11 motifs per protein dataset (the full catalogue of motifs

can be found in Data S1). We divided these into four categories:

‘‘known motifs’’ that match previously identified motifs in both

sequence and biological context, ‘‘semi-novel’’ motifs with similar

sequence to previously identified motifs but a distinct biological

context, ‘‘novel motifs’’ that do not represent sequence matches to

any known motif, and ‘‘domain signatures’’ that match distinctive,

conserved sequences within larger protein domains (Text S1). A

selection of known, semi-novel, and novel motifs (Table 1) reflects the

diversity of recovered motifs and their associated biological contexts.

Phosphorylation sites are prominent among known and
novel motifs

Consistent with the central role of phosphorylation in protein

signaling networks[33,34], FIRE-pro uncovers many known

phosphorylation sites and phospho-binding motifs. Nearly 37%

(2517) of the discovered motifs contain a prominent serine or

threonine, including 9% (631) matching the sequence of a known

kinase substrate or phospho-binding motif. Many phosphorylation

motifs were recovered by analyzing datasets consisting of protein

targets of kinases such as Cdc28, the catalytic subunit of the main

cyclin-dependent kinase (CDK) in yeast. The analyzed Cdc28

dataset, downloaded from BioGrid[35], consists of 225 proteins

that physically interact with the kinase. This includes its

phosphorylation targets (,75% of interactors) and other proteins

with which Cdc28 interacts (e.g., cyclins, phosphatases, and other

kinases). The protein-protein interaction partners were summa-

rized in a protein behavior profile, in which all yeast proteins were

classified either as Cdc28-interactors or non-interactors.

FIRE-pro discovered over six motifs that are highly informative of

interaction with Cdc28 (Figure 2). High mutual information often

translates into motif enrichment, and FIRE-pro uses a heatmap

(Figure 2A) to show levels of over- and under-representation of each

motif in each group of proteins. All motifs were highly over-

represented in the group of CDC28-interacting proteins. For

example, the most informative motif, ‘‘SP.[RK]’’, is present in 72%

of the ,225 Cdc28-interacting proteins, but in only 11% of ,5,500

other proteins (p,1e-15). We implemented an automated procedure

to compare the motifs obtained by FIRE-pro to motifs in the ELM

database [36] (Text S1). The best match to ‘‘SP.[RK]’’ in the ELM

database is ‘‘[ST]P.[RK]’’, which is the known substrate of cyclin-

dependent kinases; thus, our approach successfully recovered the

known Cdc28 target site without any assumptions or prior knowledge

except for protein sequences and information about which proteins

interact with Cdc28. One of the remaining motifs (‘‘V..[STP]P’’)

contains a serine/threonine residue and may constitute a new

phosphorylation site or a variation of the known cyclin-dependent

kinase motif. Other motifs might represent kinase docking sites [37]

or binding sites for other proteins that may cooperate with Cdc28.

A global analysis of fifty-seven kinase interaction datasets in S.

cerevisiae reveals over fifty serine- and threonine-containing motifs

that resemble phosphorylation motifs (Table S1). This list includes

‘‘R[RK].S’’, the substrate of the yeast protein kinase A (PKA)

homolog Tpk1 [38,39]; ‘‘SP.[RK]’’, the Cdc28 substrate; and the

motifs ‘‘[SD]D[SE]D’’ and ‘‘S.[SE]D’’, the substrates of the casein

kinase regulatory subunit Ckb1 and the membrane-bound casein

kinase Yck1 [39]. FIRE-pro also detected the substrates of the

yeast homologues of the proline-directed glycogen synthase kinase

3 (GSK3) family, associating ‘‘S…SP’’ with Rim11 kinase and

‘‘[ST]P..SP’’ with Mck1. Serine- and threonine-containing motifs

with no clear match in motif databases serve as testable hypotheses

of phosphorylation substrates for particular kinases and phospha-

tases. For example, several of these motifs were found amongst

proteins interacting with the putative kinase Ptk2 and the type 1

protein phosphatase Glc7 (Text S1).

Altogether, these results indicate that FIRE-pro efficiently re-

discovers known functional sites that mediate post-translational

regulation even among noisy, proteome-scale data sets, but also

produces many candidate novel protein regulatory elements that

may have important roles in regulating protein behavior.

80% of FIRE-pro motifs are novel predictions
Automated comparison [40] of all uncovered FIRE-pro motifs

with 144 known ELM motifs [36], reveals that ,38% of FIRE-pro

motifs are close sequence matches to a known motif, though many of

these sequence matches have seemingly unrelated biological contexts.

Altogether, 73% (105/144) of ELM motifs closely resemble FIRE-pro

motifs in sequence. By manually categorizing 100 randomly selected

motifs, we estimate that 18% of ,6,900 protein motifs uncovered by

FIRE-pro are known, 47% are semi-novel (i.e. motifs that match a

known motif in sequence but in a distinct biological context), and

35% are entirely novel, showing no sequence similarity to known

motifs. These results imply that ,80% of the motifs discovered by

FIRE-pro represent new predictions, i.e., motifs that poorly match

protein motifs in databases in sequence or biological context (Table

S3). This may not come as a surprise since it has been estimated that

there are hundreds of binding sites and phosphorylation motifs yet to

be discovered [21,25]. Strikingly, these predicted motifs often possess

the same features as known protein regulatory motifs, i.e., high

information values (as quantified by z-scores, which indicates the

deviation of motif information from random), positional biases within

the linear protein sequence (e.g., N- or C-terminal motifs), co-

occurrences with other motifs, and association with specific pathways

or cellular processes (Table 1). In addition to including potential

phosphorylation substrates, the discovered motifs may represent

novel localization signals, sites of other post-translational modifica-

tion, or binding motifs. For example, the motifs ‘‘A[DVA]A’’ and

‘‘V.[DKG]A’’ are enriched in proteins that interact with the

ubiquitin-like sumoylation protein Smt3 and may represent potential

interaction sites. These and other novel motif predictions provide

concrete, testable hypotheses that could contribute greatly to

understanding the regulation of protein behavior.

Analysis of protein domains reveals putative domain-
regulatory motifs and conserved domain signatures

We hypothesized that, in some cases, conserved elements of

protein domains may lead to the detection of informative motifs,

referred to here as domain signatures. This situation may occur

when similarly behaving proteins contain the same protein domain.

Protein Motif Discovery
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Table 1. Select known and novel motifs found by FIRE-pro.

Name Motif Z-score Best Match Match details Pos Bias Domain
Dom.
Overlap Best GO term

a) Known

CLB2: B-type cyclin SP.[RK] 312 SP.[RK] CDK kinase substrate Y Pkinase (1e-04) 23.5 cell cycle (1e-16)

PTK2: Putative
S/T kinase

RR.[SHP] 122 RR.S PKA kinase substrate - phosphotransferase
activity (0.01)

GO: nuclear part [KRN]KR[KSR] 99 K[KR].[KR] Nuclear localization Bromodomain
(0.001)

21.1 nuclear lumen (1e-91)

TPK1:
cAMP-dependent
kinase

R[RK].S 96 R[KER].S PKA kinase substrate

LSB3: C-terminal SH3
domain

[PQ]P..P[PTM]R 92 P..P SH3 general ligand actin cytoskeleton
biogenesis (1e-05)

GO: membrane L[LAF]G 89 LLG Beta2-Integrin binding Mito_carr
(1e-06)

0.3 intrinsic to membrane
(1e-67)

GO: transcription N[NTP]N[NAP] 77 NNNN Poly-asparagine Y Zn_clus (0.001) 20.7 transcription (1e-10)

RSP5: Ubiquitin-protein
ligase

PP.Y 76 PP.Y LIG_WW_1

CLB2: B-type cyclin L..SP 74 SP ERK1,2 Kinase
substrate

Pkinase (0.001) 21.4 bud neck (1e-06)

RIM11: kinase [GSQ]S..[ANV]SP 72 [ST]…[ST]P RIM11 Kinase
substrate

GO: transcription Q[QNH]Q 68 QQQ Poly-glutamine zf-C2H2 (1e-11) 20.9 transcription (1e-14)

GO:
membrane-enclosed
lumen

K[KRE][REH]K 67 KR CLV_PCSK_PC1ET2_1 Y nuclear lumen (1e-10)

GO: nucleus LK 67 F.F.LK…K.R Phosphatidylserine
binding

WD40 (1e-07) 20.4 nuclear lumen (1e-19)

GO: cellular
morphogenesis

[STL]S..[SAD]S 66 S..[ST] Casein kinase
I phos. site

Pkinase (0.01) 24.6 cellular morphogenesis
(1e-15)

Localization: actin PPP.[PHY] 63 PPP Polyproline Y SH3_1 (1e-04) 20.7 actin cortical patch
(1e-14)

GO: cell cycle [SYI]S…S 54 S…S WD40 binding Pkinase (1e-04) 24.8 cell cycle (10)

PPH22: phosphatase
subunit

SP.[GD]R[LYN] 52 SP ERK1,2 Kinase
substrate

Proteasome
(1e-08)

23.7 proteasome core
complex(1e-10)

CDC15: MEN kinase S..[PWH]S 30 S…S WD40 binding Pkinase (1e-18) 22 protein kinase activity
(1e-14)

b) Semi-Novel

SMT3: SUMO family
protein

A[DVA]A 66 [LV]IA[DE][PA] Caveolin pattern carboxylic acid
metabolism (1e-07)

YCK1: membrane casein
kinase

S.[SEV]D 65 HSTSDD BCKDC kinase

Plasmodium expression
cluster

K..Y[ISH] 47 Y[LI] SH2 ligand for
PLCgamma1

Y Rifin_STEVOR
(0.01)

25.3

PRE2: 20S proteasome
subunit

VEYA 46 VIYAAPF Abl kinase substrate Y Proteasome
(1e-09)

23.8 proteasome core
complex (1e-11)

PPH22: phosphatase
subunit

[TIV][FH]SP 36 SP ERK substrate Y Proteasome
(1e-12)

24.5 proteasome core
complex (1e-16)

PPH22: phosphatase
subunit

EY.[LS]E[AS] 36 [DE]Y EGFR kinase substrate Y Proteasome
(1e-10)

24.1 proteasome core
complex (1e-09)

HTZ1: Histone [GVH]G[KYQ]G 32 GGQ N-methylation in E. coli Y Histone (1e-05) 22.5 nuclear chromatin
(1e-06)

PAB1: Poly(A) binding G.[PRT]G 31 IQ.RG.RG Binding on
Calmodulin

RRM_1 (0.001) 24.1 RNA metabolism
(1e-09)

Localization: periphery
(S. pombe)

T..[PSL]N 30 T..[SA] FHA of KAPP binding Pkinase (1e-04) 22 barrier septum
(1e-54)

Plasmodium expression
cluster

R.[GSA]R 29 [AG]R Protease matriptase site DEAD (1e-13) 22.9 ATP-dependent
helicase activity (1e-12)

ARC1: tRNA binding S[DQP]S 28 R.S.S.P 14-3-3 bindings Pkinase (1e-14) 23.9 protein kinase activity
(1e-13)

Protein Motif Discovery
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We devised a strategy to assign p-values and domain overlap scores

to indicate the extent to which a motif co-occurs and overlaps with a

known protein domain more than would be expected by chance (see

Text S1). Positive domain overlap scores suggest that the motif is a

domain signature whereas negative scores indicate that the motif lies

separately from the domain and may be involved in regulating the

function of the associated protein domain (Figure 2C).

Across all analyzed profiles, we found that 2,596 motifs (37%) co-

occur with a domain. Of those motifs, 1531 or 22% of all motifs,

have positive domain overlap scores and can be considered to be

domain signatures (Text S1). As an example, we discovered multiple

relationships between these motifs enriched in Cdc28 targets and

protein kinase domains. Some of these motifs are kinase domain

signatures: for example, the ‘‘K[LI].D[FAY]G’’ motif matches the

known ‘‘DFG’’ active site in kinase domains [41].

Across all profiles, 15% of discovered motifs are associated with

a domain but lie near the domain rather than in the domain itself.

This includes the cyclin-dependent kinase substrate ‘‘SP.[RK]’’

and the motif ‘‘V..[TSP]P’’, which are consistently located near

kinase domains. For example, in 85% (11/13) of Cdc28-

interacting proteins containing a protein kinase domain and the

‘‘SP.[RK]’’ motif, the motif lies nearby rather than within the

Name Motif Z-score Best Match Match details Pos Bias Domain
Dom.
Overlap Best GO term

HHT1: histone KP..[KFV][KHA] 28 KP..[QK] LIG_SH3_4 Histone (0.01) 22.8 chromatin architecture
(1e-07)

PPI clusters SP[STN] 24 SP ERK substrate interphase (1e-06)

Localization clusters
(Huh, 2003)

P..[PSE]P 21 P.[ST]PP ERK substrate Y PX (1e-05) 20.3 cell cortex part (1e-24)

Localization multiclass
(Huh, 2003)

T..[SFL]T 11 T..[SA] FHA of KAPP binding Y nuclear pore (1e-29)

Localization clusters
(Huh, 2003)

TG.G[KLW][TFY] 11 TGY ERK6/SAPK3
activation sites

Helicase_C
(1e-10)

21.1 RNA helicase activity
(1e-11)

c) Novel

GO: nuclear part DE[EDK][ED] 131 Y nuclear lumen (1e-09)

Ubiquitin-conjugates
(Peng, 2003)

L..[LDS]A 125 Y IBN_N (1e-05) 20.4 Golgi apparatus (1e-08)

GO: membrane I[FIW]..V 70 Adaptin_N
(0.001)

0.6 transporter activity (1e-
40)

GO: ribosome
biogenesis

E[EDK]..E[EKD] 67 WD40 (0.01) 22.3 cytoplasm organization
(1e-12)

YAP1: Basic
leucine zipper

QQ..M[QIV][QTA] 66 RNA polymerase II TF
activity (1e-06)

NOP2: RNA
methyltransferase

R[GST].[DQF]IP 56 Y DEAD (1e-05) 21.1 ribosome biogenesis
(1e-08)

GO: DNA-dependent
transcription

N.D[DST] 52 zf-C2H2 (1e-06) 21.5 transcription, DNA-
dependent (1e-23)

GO: transcription N.D[DST] 52 zf-C2H2 (1e-06) 21.5 transcription, DNA-
dependent (1e-23)

SMT3: SUMO family
protein

V.[DKG]A 47 Y carboxylic acid
metabolism (1e-04)

POB3: Nucleosome
maintenance

[GH]S..KA[SI] 33 Histone (0.01) 21.6 chromatin architecture
(0.001)

UBP15:
Ubiquitin-specific
protease

A.[TSL]S 28 Pkinase (0.001) 22.1 protein kinase activity
(0.001)

PRE2: 20S proteasome
subunit

Q[VID]E 26 Proteasome (1e-
08)

24.8 proteasome complex
(1e-19)

Half-life (Belle, 2006) R.[RSY]S 25 reg. of cellular
physiological process
(1e-04)

PPI clusters GGL[FTL][GEP] 13 snRNP protein import
into nucleus (1e-07)

Known: matches previously identified; Semi-novel: matches sequence but has distinct biological context; Novel: no match.
Select (a) known, (b) semi-novel, and (c) novel motifs discovered by FIRE-pro. Known motifs match previously identified motifs in the literature in both sequence and
biological context. Semi-novel motifs match previously identified motifs in sequence but not in biological context. Novel motifs do not match any previously identified
motif. Motifs presented here were selected based on a combination of criteria including high mutual information and z-score, low domain overlap score, positional bias,
GO enrichment, and similarity to known motifs. Name refers to the dataset in which the motif was discovered and is abbreviated as follows, GO: term = binary profile of
proteins annotated to the GO term; Protein: description = binary profile of proteins interacting with the protein; Localization: compartment = binary profile of proteins
localized to the cellular compartment. See Text S1 for further description of datasets.
doi:10.1371/journal.pone.0014444.t001

Table 1. Cont.
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domain. This type of motif may impart a functional site to proteins

with a common domain and may regulate domain function and

specificity, perhaps by mediating interactions with other proteins.

Non-random positional distribution within linear protein
sequences

Many motifs, especially localization signals, tend to be positioned

at the N- or C- termini of proteins [42]. We created a procedure to

detect such positional preferences in FIRE-pro motifs (see Text S1).

Briefly, this procedure consists of determining if the position of the

motif is informative of the behavior profile, where position is

measured as a percentage of the full sequence length. Of the ,6,900

total motifs found amongst the 640 profiles, 16% were found to

show non-random positional preferences. These motifs include

known targeting motifs such as the N-terminal mitochondrial signal

peptide cleavage site ‘‘R..S’’ (p,1e-4) (Figure S1) as well as motifs

without previously known positional tendencies. Among the Cdc28

motifs, four have a non-random positional bias including the known

Cdc28 phosphorylation substrate ‘‘SP.[RK]’’, which is preferen-

tially located at the N-terminus (Figure 2D); over 20% of sites in

Cdc28-interacting proteins lie in the first tenth of the linear protein

sequence compared to only 12% of sites in non-Cdc28-interacting

proteins (p,1e-5). FIRE-pro’s analysis further revealed that the

motif ‘‘E.E[KDY]’’ tends to be located in the last third of the protein

sequence. We speculate that these positional biases in the primary

sequence indicate a tendency of certain protein regulatory motifs to

be located near particular localization signals or in specific structural

regions, e.g. regions of protein disorder [12] (see below). Regardless,

the observation that a motif has a non-random positional

distribution provides further evidence for the functionality of the

computationally predicted motifs.

Extensive co-occurrence between motifs suggests
combinatorial regulation at the post-translational level

FIRE-pro also determines motif pairs that co-occur within the

same proteins and co-localize in the primary protein sequences

(Text S1). Briefly, this is done by assessing whether the presence of

one motif in a sequence is informative about the presence of

another motif, and if so whether the distance between the motifs is

informative of protein behavior. When applied to the Cdc28

motifs (Figure 2B), this procedure indicates that most motifs tend

to co-occur in the same proteins (yellow colors and green frames).

Figure 2. Motifs found in Cdc28 (YBR160W) interacting proteins. (A) P-value heatmap of motifs found in Cdc28-interacting proteins.
Columns correspond to classes of proteins and rows correspond to predicted motifs. The yellow color-map indicates over-representation of a motif in
a given class; significant over-representation (p,0.05 after Bonferroni correction) is highlighted using red frames. Similarly, the blue color-map and
blue frames indicate under-representation. For each motif, we indicate 1) position-weight matrix (PWM) representation, 2) mutual information (MI)
value, 3) z-score associated with the MI value, 4) robustness score ranging from 0 to 10/10. (B) Motif interaction heat map. Columns/rows correspond
to motifs. Light-colored boxes represent co-occurring motifs and ‘‘+’’ signs represent spatial co-localization. Dark-colored boxes represent motif co-
avoidance. Values represent information (in bits). (C) Auto-generated enrichment analysis table. For each motif, we indicate 1) the presence of a
position bias, 2) GO enrichment, 3) domain enrichment, 4) domain overlap score indicating the positional overlap between the motif and the most
enriched domain. (D) Positional bias of ‘‘SP.[RK]’’. For every motif, a histogram is automatically generated showing the distribution of motif instance
positions, normalized to protein length. Upper row, histogram of motif instance positions in Cdc28-interacting proteins (‘‘Targets’’). Lower row,
histogram of positions in proteins that do not interact with Cdc28 (‘‘Other’’).
doi:10.1371/journal.pone.0014444.g002
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Figure 3. Multi-class analysis of protein sub-cellular localization. The data [44] were clustered into six distinct localization patterns, each
represented by a column of the matrix: nucleus, mitochondria, cell periphery, nucleus & cytoplasm, cytoplasm, and ER (see Figure S2 and Text S1). (A)
P-value heatmap of motifs uncovered in the analysis. The top motif, ‘‘K[KRP].K’’, matches the well-known nuclear localization signal (NLS). The
hydrophobic motifs found to be enriched in ER proteins may suggest the existence of signals within stretches of hydrophobic residues. Enrichment
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For example, nearly 60% of the Cdc28-interacting proteins that

contain the ‘‘SP.[RK]’’ substrate motif also contain the motif

‘‘E.E[KDY]’’ (p,1e-4). We also find that this motif pair tends to

co-localize in linear protein sequences (‘‘+’’ signs in Figure 2B). We

hypothesize that these interactions correspond to functional

cooperation between protein regulatory elements (and possibly

between the proteins that bind them) and may represent

combinatorial regulation at the post-translational level, analogous

to combinatorial regulation at the transcriptional and post-

transcriptional level [29,43].

Overall, our protein motif dataset contains ,1,500 interacting

motif pairs involving ,2,000 individual motifs, indicating that

,25% of the motifs are involved in motif-motif interactions. While

some interactions represent neighboring domain signatures, others

may mediate co-regulation of protein binding or post-translational

modification. One example of potential co-regulation is a cluster of

three co-localizing motifs found in proteins that interact with the

ribosomal subunit protein Rps17b. Of the 63 proteins that contain

the motifs ‘‘AR..[AR]’’, ‘‘K.[RAK]A’’, or ‘‘G[KMI]K[VAG]’’,

over half contain at least two of the three motifs. This observation

suggests that interaction with Rps17B is mediated by several,

possibly redundant protein motifs; alternatively it may indicate that

additional proteins cooperate with Rps17b to regulate its targets.

Sequence determinants of sub-cellular localization and
protein half-life

Many protein motif analyses involve comparing two classes of

proteins, e.g. CDC28-interacting proteins vs proteins that do not

interact with CDC28. However, many protein behaviors involve

more than two protein groups. This is the case for protein

localization, where proteins can be localized to many distinct

compartments, e.g. nucleus, ER, Golgi, cytoplasm, membrane and

mitochondria. While each of these behaviors can in principle be

analyzed independently, analyzing them simultaneously can be

useful because the same protein motif can be associated with

multiple protein groups and thus weak but consistent enrichment

across multiple groups would result in higher and more

significantly informative motifs. Due to its use of mutual

information, the FIRE-pro framework can naturally process

multiple protein groups simultaneously. Moreover, the combined

heatmaps show motif over- or under-representation across all

groups provides easier interpretation of protein motif function. As

part of our global analysis, we applied FIRE-pro to a sub-cellular

localization dataset obtained from ,4,000 GFP-tagged proteins in

S. cerevisiae [44]. We grouped the 4,000 proteins into six distinct

and non-overlapping localization patterns: nucleus, mitochondria,

cytoplasm, nucleus & cytoplasm, endoplasmic reticulum (ER), and

cell periphery/ambiguous (Figure S2).

Application of FIRE-pro to the resulting multi-class localization

partition revealed sixteen motifs (Figure 3 and Figure S3). The

most informative one, ‘‘K[KR].K’’, matches the well-character-

ized nuclear localization signal (NLS) [45,46]. It is strongly over-

represented in nuclear proteins (p,1e-15), while also specifically

under-represented in mitochondrial and ER proteins. FIRE-pro

also recovered more subtle localization signals including the

experimentally-derived mitochondrial signal peptide cleavage site

‘‘R..S’’ [47]. The motif ‘‘RF[YNK]S’’, also highly enriched

among mitochondrial proteins and preferentially located at the

N-terminus (Figure S3), perfectly matches the recently identified

cleavage site of the major mitochondrial processing peptidase

[48]. Further motif analysis using a binary profile of mitocho-

ndrial localization uncovered two additional N-terminal motifs:

‘‘RSF[SH]’’ and ‘‘R[LFY].[ST]T’’. Together these cleavage

motifs are present in over 100 mitochondrial-localized proteins,

demonstrating the sensitivity of our motif-finding approach.

An advantage of FIRE-pro over existing methods is its ability to

discover motifs associated with quantitative protein measurements.

Figure 4. Analysis of quantitative protein half-life data. Half-life data for ,3,750 yeast proteins [50] were sorted and binned into ten equally
populated classes, with the shortest half-life proteins comprising the left-most column and longest half-life proteins comprising the right-most
column. The range of half-lives in each bin in minutes is indicated below the heatmap. Four motifs were found to be informative of half-life, all of
which are associated with short half-life. The heatmap shows a gradual transition from over- to under-representation of each motif across the ten
bins. The top motif shows an association with protein kinase domains though it does not overlap with the domain, while the bottom three motifs
may represent protein kinase domain signatures (see Figure S4 for functional enrichment analysis).
doi:10.1371/journal.pone.0014444.g004

analysis for the motifs can be found in Figure S3. (B) Linear sequence position bias of a mitochondrial motif corresponding to the ‘‘RFYS’’ consensus
sequence for the N-terminal mitochondrial signal peptide cleavage site [47,48]. Comparing motif positions in mitochondrial proteins against non-
mitochondrial proteins reveals strong N-terminal enrichment.
doi:10.1371/journal.pone.0014444.g003
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This feature stems from the capacity of FIRE-pro to find motifs

that are informative of multiple protein groups, as quantitative

protein measurements are first discretized (i.e., split into bins

containing similar measurement values) prior to estimating the

mutual information. The discretization process used in FIRE-pro

is the same as the one used in FIRE [29] and uses equally

populated bins; this maximum-entropy discretization process is

advantageous because it makes no assumptions regarding the

distribution of measurement values [49]. To illustrate the utility of

FIRE-pro in the context of continuous protein data, we applied

FIRE-pro to quantitative half-life measurements of ,3,750 yeast

proteins [50]. This analysis revealed four motifs informative of

short half-lives (Figure 4, Text S1). The most informative motif,

‘‘R.[RS]S’’, is found in proteins enriched for a non-overlapping

protein kinase domain (p,1e-4). Experimental validation is

necessary to determine whether the motif directly contributes to

short protein half-life. We anticipate that the capacity to detect

motifs from quantitative data will dramatically enhance our ability

to understand the mechanisms underlying protein behavior as

quantitative mass-spectrometry and antibody-based proteomic

technologies continue to rapidly expand.

Linear motifs and protein disorder
It has previously been shown that functional instances of protein

motifs tend to lie in intrinsically disordered regions of protein

sequence [12,13,14]. Because FIRE-pro does not use protein

disorder data during the motif discovery phase, such data provides

an opportunity to independently assess the validity of the motif

predictions. Indeed, analysis of the ,6,900 FIRE-pro motifs shows

that these motifs tend to be more likely to be found in disordered

regions than expected by chance (Text S1 and Figure S9). While

we found that many motifs with disorder are known protein motifs

or domain signatures (e.g., the CDC28 motif ‘‘SP.[RK]’’ and the

‘‘KMSKS’’ motif of aminoacyl-tRNA synthetases), the extent to

which a motif lies in a region of protein disorder may be used to

prioritize novel motif predictions. For example, proteins physically

interacting with the autophagy-related kinase ATG1 are enriched

for the motif ‘‘[SNG]D..S’’, which is found in disordered regions

more frequently than 93% of all 3-mers.

Comparison to other protein motif discovery algorithms
To benchmark FIRE-pro’s performance, we carried out a

comparative study of existing methods (Motif-x [21], TEIRESIAS

[19], DiLiMot [20,25], and SLiMFinder [22]) on five biological

datasets (Text S1). The comparison indicates that FIRE-pro has

comparable sensitivity and specficifty to existing methods yet is

more amenable to the analysis of complex, proteome-scale

datasets. FIRE-pro is also the only motif discovery framework

that can comprehensively annotate the discovered motifs in terms

of functional enrichment, similarity to known motifs, position bias

in primary sequence, and co-occurrence among motifs and protein

domains. This aspect of our approach is crucial because it helps

understand and interpret the precise function of the discovered

motifs and will guide the design of follow-up wet-lab experiments.

A critical feature of our approach is that it returns very few

motifs when given randomized input. To illustrate this, we

randomly shuffled the protein behavior profiles of the five datasets

mentioned above and applied FIRE-pro to the shuffled data with

the same parameters as the original run. The number of motifs

found per randomized dataset ranged from 0–3 with an average of

1.2 motifs as compared to a range of 3–17 and an average of 9

motifs per real dataset (Table S6). Thus we estimate that ,10% of

the motifs recovered by FIRE-pro could be found by chance.

Interestingly, among the three largest data sets, only one random

motif was found as compared to 34 real motifs, indicating a trend

towards lower false discovery rates for larger datasets. FIRE-pro

analysis of 375 shuffled datasets returned only 35 motifs as

compared to ,5,000 motifs with the original datasets, implying

that FIRE-pro’s specificity is consistently high over a variety of

datasets.

Discussion

As the amount of available proteomic and genomic data

expands, biologists increasingly rely on computational methods to

extract key features and general principles from the data. We have

therefore designed an approach to protein motif discovery that is

capable of harnessing the information found in large-scale

datasets, such as protein abundance, gene expression, localization,

and post-translational modification. FIRE-pro facilitates the

discovery of short sequence motifs informative of the global

behavior of proteins. The use of mutual information provides a

universal framework that can be applied to any type of biological

data, be it discrete or quantitative, and the algorithm can be

applied to proteome-scale data from any organism, including

humans. The algorithm can simultaneously discover over- and

under-represented motifs and has no requirement for an explicit

background model. Given the increasingly quantitative nature of

proteomics experiments, we believe that FIRE-pro is a valuable

tool capable of revealing sequence elements that determine diverse

protein behavior.

The systematic application of our approach to a set of ,650

proteomic datasets revealed several novel insights into post-

translational regulatory networks. We discovered that many of the

strongest motifs tend to be under-represented in specific groups of

proteins just as they are over-represented in coherent groups of

proteins in which the motif is thought to play a functional role.

Context-dependent avoidance of specific motifs may represent a

crucial constraint for the evolution of protein sequences and be an

important parameter in successful design of custom proteins. It

was also intriguing to discover a number of potential phosphor-

ylation motifs informative of protein-protein interactions. While

these motifs need to be further characterized and experimentally

tested, the abundance of known and putative phosphorylation sites

is not surprising as eukaryotic genomes contain hundreds of

kinases that exert a profound influence on cellular activity.

However, relatively little is known about substrate specificity for

most of these kinases, and we anticipate that our framework and

results will shed light on the structure of phosphorylation networks.

Our study also underscores the fact that functional motifs tend to

have a variety of non-random features including gene functional

enrichment, position biases in linear sequence, relationships with

protein domains, co-occurrence with other motifs, and associations

with regions of protein. The comprehensive understanding of

these features is important because it provides information

regarding some of the mechanisms underlying post-translational

regulation. A natural extension of our work is the systematic

integration of these distinct features, e.g., using probabilistic

weighting, in order to enable the recognition of functional protein

motif instances and to facilitate the prediction of post-translational

regulation directly from primary protein sequences.

In summary, FIRE-pro is an approach to protein motif-finding

suited for the proteomic era. Rather than finding motifs over-

represented in a set of proteins relative to a background set, the

algorithm seeks to discover motifs informative of measurements or

behaviors associated with each protein. In addition to presenting

an approach for motif-finding in large-scale data, we have

presented a number of examples of known and novel predictions
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of protein motifs uncovered by FIRE-pro. In the future, such

information could form the basis for a library of protein motifs to

be used in synthetic biology, i.e., to engineer protein behaviors

such as half-life, localization, and interaction partners. It is our

hope that computational tools such as FIRE-pro will help advance

the body of biological and biomedical knowledge and perhaps

yield new organizing principles about post-translational regulation

of protein function. To this end, the source code, datasets, and

results are freely available at http://tavazoielab.princeton.edu/

FIRE-pro. We expect that application of FIRE-pro to human

protein data will lead to new insights about how mutations in

protein regulatory motifs disrupt protein function and ultimately

contribute to human disease.

Supporting Information

Text S1 Supplementary methods and text

Found at: doi:10.1371/journal.pone.0014444.s001 (0.24 MB

PDF)

Figure S1 Mitochondrial localization motifs. (A) P-value heat-

map of motifs enriched in mitochondrial-localized proteins.

Columns correspond to classes of proteins and rows correspond

to predicted motifs. The yellow/blue color-map indicates over/

under-representation of a motif in a given group. (B) Position bias

of a mitochondrial motif corresponding to the "RxxS" consensus

sequence for the N-terminal mitochondrial signal peptide cleavage

site. A histogram of normalized motif positions in mitochondrial

proteins ("Enriched") reveals that the motif is highly enriched in

the N-terminus relative to non-mitochondrial proteins ("Other").

Found at: doi:10.1371/journal.pone.0014444.s002 (0.08 MB

PDF)

Figure S2 Protein localization profile. (A) Sub-cellular localiza-

tion data from S. cerevisiae (Huh et al., 2003) was clustered into six

distinct localization patterns: "nucleus", "mitochondria", "cyto-

plasm", "nucleus & cytoplasm", "ER", and "cell periphery &

ambiguous". Each row represents a protein, with each column

representing a particular sub-cellular localization. Cluster 2 ("cell

periphery & ambiguous") includes proteins localized to a variety of

organelles such as the nuclear pore, vacuoles, and microtubules. (B)

iPAGE enrichment analysis of clustered localization data. Columns

correspond to clusters in panel A and to columns in Figure 3.

Found at: doi:10.1371/journal.pone.0014444.s003 (0.10 MB

PDF)

Figure S3 Enrichment analysis table for motifs associated with

sub-cellular localization (see Figure 3). For each motif, we indicate

1) the presence of a position bias, 2) top Gene Ontology (GO)

enrichment for motif targets (i.e., motif-containing proteins in

motif-enriched clusters), 3) top domain enrichment (Pfam) for

motif targets, 4) Domain overlap score indicating the positional

overlap between the motif and the most enriched domain.

Found at: doi:10.1371/journal.pone.0014444.s004 (0.09 MB

PDF)

Figure S4 GO analysis of protein half-life and enrichment

analysis of half-life motifs. (A) iPAGE analysis of quantitative half-

life data in S. cerevisiae. The half-life values for ,3,750 yeast

proteins were sorted and binned into ten equally populated classes,

with the shortest half-life proteins comprising the left-most

columns and longest half-life proteins comprising the right most

columns. The columns represent protein behavior classes and

correspond to those in Figure 4. Proteins with short half-lives tend

to be enriched for transcription factors whereas proteins with long

half-lives are enriched for ribosomal and nucleotide metabolism

proteins. (B) Enrichment analysis table for motifs associated with

protein half-life. GO and domain enrichment analyses were

applied to all proteins containing a motif. Protein kinase domains

appear to be enriched for motifs associated with short half-life.

While the last three motifs are likely to be domain signatures, the

top motif "R.[RSY]S" has a strongly negative overlap Z-score and

thus may act as a regulatory motif of protein kinase domains.

Found at: doi:10.1371/journal.pone.0014444.s005 (0.10 MB

PDF)

Figure S5 GO analysis of quantitative protein abundance data

in S. cerevisiae. Protein abundance measurements from ,3,800

TAP-tagged yeast proteins (Belle et al., 2006) were binned into ten

classes, with low-abundance proteins on the left and high-

abundance proteins on the right, and analyzed with iPAGE.

Columns represent protein behavior classes and correspond to the

columns in Figure S6. Low-abundance proteins are enriched for

microtubule-associated proteins, DNA binding proteins, and

protein kinases, whereas high-abundance proteins are enriched

for constitutively active processes such as ribosomal proteins,

nucleotide metabolism and protein-folding proteins. Intermediate-

abundance proteins seem to be enriched for RNA splicing

proteins.

Found at: doi:10.1371/journal.pone.0014444.s006 (0.06 MB

PDF)

Figure S6 Analysis of quantitative protein abundance data in S.

cerevisiae. (A) Protein abundance measurements from ,3,800 TAP-

tagged yeast proteins (Belle et al., 2006) were binned into ten

classes and analyzed with FIRE-pro. Low-abundance proteins (left

columns) were enriched for cytoskeletal proteins, DNA-binding

proteins, and kinases, whereas high abundance proteins (right

columns) were enriched for house-keeping proteins such as those

involved in maintenance of localization, proteasome complexes,

and ribosomes. FIRE-pro finds seven protein motifs informative of

low protein abundance and one motif informative of high protein

abundance. Similar to half-life results (Figure 4), the pattern of

over- and under-representation of each motif forms a gradient

across the bins with similar levels of protein abundance. The heat

map shows both forward and backwards gradients, from low to

high abundance and vice versa. (B) Enrichment analysis of all

proteins containing each motif.

Found at: doi:10.1371/journal.pone.0014444.s007 (0.08 MB

PDF)

Figure S7 GO analysis of clustered PPI network profile. iPAGE

analysis of clustered protein-protein interaction data from

BioGRID. Clusters include groups enriched for biological

processes such as RNA processing and protein sumoylation,

cellular components such as nucleoplasm and proteosomal

complex, and molecular functions such as transferase activity.

The columns represent protein clusters and correspond to the

columns in Figure S8.

Found at: doi:10.1371/journal.pone.0014444.s008 (0.06 MB

PDF)

Figure S8 Multiclass analysis of clustered protein interaction

network. (A) Protein-protein interaction data from BioGRID was

clustered using the MCL graph-clustering algorithm and cluster

indices were used as input to FIRE-pro. Ten motifs are found in

the protein interaction clusters compared to zero motifs found in a

control analysis of genetic-interaction cluster data. A log p-value

matrix shows a number of known and unknown motifs involved in

various modules of the network. (B) Enrichment analysis of all

proteins containing each motif.

Found at: doi:10.1371/journal.pone.0014444.s009 (0.09 MB

PDF)
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Figure S9 Protein disorder analysis. Distributions of disorder

scores for all 3-mers, 4-mers, and FIRE-pro motifs. Disordered

regions of the S. cerevisiae proteome were determined by DisEMBL,

putative instances of motifs or k-mers were identified, and the

disorder score was defined as the percentage of motif instances

across the entire proteome that lie in disordered regions. FIRE-pro

motifs are found more frequently in regions of protein disorder than

all 3-mers or 4-mers (Kolmogorov-Smirnov test: p,1e-175; FIRE-

pro motifs: N = 6,862; 3-mers: N = 8,000; 4-mers: N = 118,908).

Found at: doi:10.1371/journal.pone.0014444.s010 (0.10 MB

PDF)

Table S1 Phosphorylation motifs found amongst kinase and

phosphatase interactors

Found at: doi:10.1371/journal.pone.0014444.s011 (0.05 MB

PDF)

Table S2 Domain signature motifs

Found at: doi:10.1371/journal.pone.0014444.s012 (0.07 MB

PDF)

Table S3 Categorization into known, semi-novel, and novel

motifs

Found at: doi:10.1371/journal.pone.0014444.s013 (0.06 MB

PDF)

Table S4 Motif-discovery algorithms used in comparison

Found at: doi:10.1371/journal.pone.0014444.s014 (0.05 MB

PDF)

Table S5 Summary of data sets used in algorithm comparison

Found at: doi:10.1371/journal.pone.0014444.s015 (0.04 MB

PDF)

Table S6 Results of algorithm comparison

Found at: doi:10.1371/journal.pone.0014444.s016 (0.06 MB

PDF)

Data S1 A catalogue of all motifs discovered by FIRE-pro

Found at: doi:10.1371/journal.pone.0014444.s017 (1.65 MB

XLS)
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